Réaction au feu d'un composite époxy de carbone : comparaison de la dégradation fournie par une flamme de kérosène ou de propane

Chazelle T., Perrier A., Schuhler E., Cabot G., Coppalle A. ¹ Normandy University/INSA Rouen/CORIA/.ST Etienne du Rouvray/France coppalle@coria.fr

> Plan de la présentation

- Le contexte et les objectifs
- Les bruleurs et les propriétés des flammes
- Résultats and discussions
 - perte de masse
 - Température arrière
 - La deposition de la suie
- conclusions

Contexte and objectifs

T ≈ 1000°C Φ up to 200 kW/m2

Les composites dans les avions: de nombreux avantages

Mais une question importante: la réaction du feu

===>Standard tests standards: grands echantillons

> Tests à petites échelles:

Developed Standard Test

- moins coûteux, plus de tests sont possibles

-ils fournissent plus de données pour comprendre la dégradation thermique et la diminution des propriétés mécaniques des échantillons

soumis à une contrainte thermique

(comparé à un verdict succès / échec des tests standard)

Contexte and objectifs

Tests à petites échelles: quelques points importants

Ia plupart des tests sont effectués avec un calorimétrie à cône ===> seul un flux radiatif peut être appliqué, et jusqu'à 100 kW / m2

 Jusqu'à présent, moins d'études avec l'utilisation de flammes pour induire un stress thermique sur les matériaux
 ==> Dans ce travail à petite échelle, dégradation de composites C-époxy soumis à des flammes de kérosène et de propane

- les flammes induisent à la fois des flux convectifs et radiatifs, avec une contribution différente selon la nature du carburant.
- Dans le cas d'une flamme avec peu de suies, comme celle produite par la combustion du propane dans des conditions stœchiométriques,
 ===>le flux convectif est important.
- Dans le cas d'une flamme avec beaucoup de suies, comme celle produite par la combustion du kérosène

===>augmentation de la contribution du flux radiatif.

Propane burner

- (1) Mirror (2) infrared camera(3) Sample holder (4) Load cell(5) burner
- (6) air inlet (7) propane inlet

3.5 cm diameter

schematic view of the propane burner and the measurement setup

Kerosen burner

IMPORTANT: Pour les résultats présentés ici, cette partie du brûleur a été réglée pour produire une flamme à haute teneur en suie

Burner + flame-tube (without insulation)

Bruleur kerosene: le système de mesures

Le porte échantillon

ouverture délimitant la surface de l'échantillon exposée à la flamme Diameter: 3.5 cm propane 5 cm kerosen

écran derrière le porte-échantillon: pour éviter la recirculation des gaz chauds sur la face arrière de l'échantillon.

propriétés des flammes

Avant chaque essai: mesures du flux thermique et de la température de flamme ===> au même endroit que le porte échantillon.

Propane flamme: 1110 °C sur l'axe et106 kw/m2 Kerosen flamme: 1110 °C sur l'axe et 116 kw/m2

-2 mm thick plate,

Stacking sequence of carbon fiber: 5-harness satin weave mass fraction of fiber is 74%.

-Onset temperature of degradation Td at 320°C

peak of mass loss rate at Tp 390°C,

Perte de masse

Temperature sur la face arrière (camera IR)

Un exemple: test 'kero 1', à 150s.

homogénéité de la température sur la zone de la face arrière délimité par l'ouverture de 5cm

===> Cela suggère que la majeure partie du flux thermique appliqué sur la zone exposée correspondante

est transmis à travers la profondeur de l'échantillon (faible flux radial).

Résultats similaires pour les autres tests

Temperature sur la face arrière (camera IR) Deux périodes

Valeurs au centre de la face arrière

première période: jusqu'à 40s environ

- Ia température augmente rapidement avec le même taux pour les deux flammes,
- ===> forte conduction thermique à travers l'épaisseur de l'échantillon.
- À la fin de la première période,

les températures se situent entre 300 et 400 ° C

===> correspondant au début de la dégradation thermique de la résine

Temperature sur la face arrière (camera IR)

La temperature 'face arrière' augmente rapidement: 750K/mn.

Donc, le gradient de température dans l'échantillon doit être très élevé, ===> cela entraîne de fortes contraintes mécaniques induites thermiquement entraînant la formation *de micro-fissures* et le *délaminage*

> Pour certains tests, la température chute

===> apparition de grandes fissures à l'intérieur de l'échantillon. agissant comme une barrière thermique (ce phénomène ne se produit pas automatiquement)

Temperature sur la face arrière (camera IR)

deuxième periode: t > 40s

- > Températures plus ou moins stationnaires à la fin des essais:
- 2 processus en compétition sur la surface exposée
- Un flux convectif décroissant de la flamme en raison de l'augmentation de Tp
- une augmentation des pertes radiatives
- ===> équilibre entre ces deux processus sur la surface exposée

(a)

Temperature sur la face arrière (camera IR)

deuxième periode: t > 40s

Valeurs au centre de la face arrière

Différence de température à la fin des tests

Tp kérosène <Tp propane: la différence est assez significative (> 100 ° C).

 Ceci peut être expliqué par le dépôt de suie sur la face avant, qui est non négligeable pour le cas de la flamme de kérosène
 ==> barrière thermique, pour réduire le transfert de chaleur à l'intérieur de l'échantillon

(a)

Températures plus ou moins stationnaires à la fin des tests
 ==> la résistance thermique de la couche de suie peut être estimée dans le régime stable

> λ_{eff} : La conductibilité effective de la couche depend de - la conductibilité du gaz λ_p et de la phase solide λ_s

- la porosité V_p de la couche ($v_p = Vp/V$)

La méthode la plus souvent utilisée pour calculer λ_{eff} : une loi de mélange La couche de suies= materiel poreux (soot λ_s + gaz λ_p)

Results and discussion

Difficile de savoir quelle loi est la plus representative d'un dépôt de suies

> En utilisant les trois lois précédement citées,

===> estimation de la résistance thermique, $\Delta T = \Phi e / \lambda_{eff.}$ du dépôt

Ces calculs simples de l'écart de température dans la couche de suie montre que celle-ci peut induire une résistance thermique au flux de flamme

Conclusions

Pour analyser la réaction au feu de composites soumis à des flammes, ===> des tests à petite échelle sont possibles, tout en respectant les conditions (Tp, flux) des tests standards

Avantage: Par rapport aux tests standard, ils permettent de réaliser des analyses plus détaillées de la réaction au feu des composites.

- Pour cela: Des bruleurs propane ou kerosene ont été developpés pour agresser des échantillons de 10cm2
- Résultats avec un composite C-epoxy (2 mm d'épaisseur)
- ===> La période de chauffage du composite est courte, environ 40 ans
 - Cela induit de forts gradients de température à l'intérieur du composite, conduisant à des fissures pouvant agir comme une barrière thermique
- Avec le réglage utilisé dans cette étude pour le brûleur au kérosène: un contenu en suies élevé a été généré,
- ===> induisant un dépôt de suie sur la surface exposée,

qui peut également agir comme une barrière thermique.

